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GENERALIZATIONS OF GREATEST COMMON

DIVISORS OF GCD DOMAINS

Sang-Cho Chung*

Abstract. In this paper we study several generalizations of great-
est common divisor of GCD domain with always the greatest com-
mon divisor.

1. Introduction and preliminaries

In the ring of integers, the greatest common divisor (gcd) of two or
more integers, which are not all zero, always uniquely exist. But in an
integral domain without an order relation, the largest common divisor
is not unique.

Throughout this paper, D is an integral domain. Let a and b be
elements in D. We say that a divides b, and write a|b, if there exists
an element c ∈ D such that b = ac. A unit in D is an element with
a multiplicative inverse. The elements a and b in D are associates if
a = ub for some unit u in D.

Let A be a nonempty subset ofD. The element d is a greatest common
divisor (gcd) of A if d|a for each a in A, and whenever e|a for each a in
A, we have e|d.

In general, the greatest common divisor is not unique, so we denote
the set of all greatest common divisors of A by GCD(A).

The elements of A are said to be relatively prime (or the set A is said
to be relatively prime) if 1 is a greatest common divisor of A.

The element m is a least common multiple (lcm) of A if a|m for each
a in A, and whenever a|e for each a in A, we have m|e.

In general, the least common multiple is not unique, so we denote the
set of all greatest common divisors of A by LCM(A).

In case GCD({a, b}) = GCD(a, b) and LCM({a, b}) = LCM(a, b)
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For non-empty subsets A, B ⊂ D, a set multiplication AB is a set
AB = {ab | a ∈ A, b ∈ B}.

Example 1.1. In the ring of integers Z, the set of all greatest common
divisors and the set of all least common multiples of two integers 6, 8
are GCD(6, 8) = {2, −2} and LCM(6, 8) = {24, −24}

By the ordinary definition of the greatest common divisor and the
least common multiple, gcd(6, 8) = 2 and lcm(6, 8) = 24. Obviously,
gcd(6, 8) ∈ GCD(6, 8) and lcm(6, 8) ∈ LCM(6, 8).

Example 1.2. In an euclidean domain Z[i], the set of all greatest
common divisors and the set of all least common multiples of two ele-
ments 1+ i, 2 ∈ Z[i] are GCD(1+ i, 2) = {1+ i, −1− i, −1+ i, 1− i}
and LCM(1 + i, 2) = {2, −2, 2i, −2i}.

An integral domain D is a GCD-domain if any two elements admit
at least one greatest common divisor.

In general, an integral domain D is not a GCD-domain([3, see Theo-
rem 4] or Theorem 2.1). An integral domain is a UFD(unique factoriza-
tion domain) if and only if it is a GCD domain satisfying the ascending
chain condition on principal ideals [4].

Therefore for finite subsets of a UFD, greatest common divisors and
least common multiples always exist [3, see p. 75].

In this paper we study several generalizations of greatest common
divisor of GCD domain where the greatest common divisor is always
present for both elements.

2. Generalized greatest common divisors

Let’s investigate an integral domain that does not have greatest com-
mon divisors.

Theorem 2.1. [3, Theorem 4] In an integral domain Z[
√
−d], d ≥ 3

a nonsquare integer, we have the following.

(1) In case d + 1 is not a prime number, let d + 1 = pk where p
is a prime and k ≥ 2. Then 1 ∈ GCD(p, 1 +

√
−d) exists but

GCD(pk, (1 +
√
−d)k) does not exist.

(2) In case d + 1 is a prime number, let d + 4 = 2k for some k ≥ 2.
Then 1 ∈ GCD(2, 2 +

√
−d) exists but GCD(2k, (2 +

√
−d)k)

does not exist.

The following Theorem shows that in a GCD-domain any two ele-
ments admit at least one least common multiple.
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Theorem 2.2. [2, Corollary 43] For an integral domain D, The fol-
lowings are equivalent.

(1) Any two elements of D have a greatest common divisor.
(2) Any two elements of D have a least common multiple.

Theorem 2.3. [2, refer to Lemma 33] Let D be an integral do-
main. For a, b ∈ D, assume that there exist d ∈ GCD(a, b) and
m ∈ LCM(a, b). Then we have the following.

(1) d′ ∈ GCD(a, b) if and only if d and d′ are associates.
(2) m′ ∈ LCM(a, b) if and only if m and m′ are associates.
(3) 1 ∈ GCD(a, b) if and only if GCD(a, b) = {u | u is a unit in D}.
(4) 1 ∈ LCM(a, b) if and only if a and b are units in D.

In special, the cardinality of element ofGCD(a, b) and that of element
of LCM(a, b) are the same. That is, the cardinality is of the set of all
units.

Proof. (1) (⇒) Since d and d′ are elements of GCD(a, b), by the
definition of the greatest common divisor, d|d′ and d′|d. Therefore there
exist x, x′ ∈ D such that d = d′x′ and d′ = dx.

At first if d = 0, then d′ = 0 and hence 0 = d = d′ = d′1. Therefore
d and d′ are associative elements.

Next if d ̸= 0, then since D is an integral domain,

d = (dx)x′ = d(xx′) =⇒ 1 = xx′ =⇒ x and x′ are units.

Therefore d and d′ are associative elements.
(⇐) Let d and d′ be associative elements. Then there exists a unit

u ∈ D such that
d = ud′.

Since d|a and d|b, we have

d|a, d|b =⇒ ud′|a, ud′|b =⇒ d′|a, d′|b.
Next if e|a, e|b, then for some x ∈ D

e|d =⇒ d = ex =⇒ ud′ = ex =⇒ d′ = e(xu−1) =⇒ e|d′.
Hence d′ ∈ GCD(a, b).

(2) From the similar method as above in (1), we can get the conclu-
sion.

(3) It follows from (1).
(4) It follows from (2).

Theorem 2.4. Let D be a GCD-domain. Then for x, y, x′, y′ in
D, we have the followings.
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(1) If GCD(x, y)∩GCD(x′, y′) ̸= ∅, then GCD(x, y) = GCD(x′, y′).
(2) If LCM(x, y)∩LCM(x′, y′) ̸= ∅, then LCM(x, y) = LCM(x′, y′).

Proof. (1) Take an element a ∈ GCD(x, y)∩GCD(x′, y′). Then there
are elements ax, ay, ax′ , ay′ ∈ D such that

x = aax, y = aay, x′ = aax′ , y′ = aay′ .

(⊂) For all b ∈ GCD(x, y), since a ∈ GCD(x, y), by Theorem 2.3
there is a unit u ∈ D such that

a = bu.

Then

x′ = aax′ = (bu)ax′ and y′ = aay′ = (bu)ay′ .

Therefore

b|x′ and b|y′.
Next assume that e|x′ and e|y′ for some element e ∈ D. Since a ∈

GCD(x′, y′), we have e|a. Hence a = ee′ for some e′ ∈ D. Therefore
bu = a = ee′, and then

b = e(e′u−1).

That is e|b, and b ∈ GCD(x′, y′). Hence

GCD(x, y) ⊂ GCD(x′, y′).

(⊃) Using the similar method as above,

GCD(x′, y′) ⊂ GCD(x, y).

Thus we have GCD(x′, y′) = GCD(x, y).
(2) From the similar method as above in (1), we can get the conclu-

sion.

Theorem 2.5. [2, Proposition 39 and Proposition 44] Let D be an
integral domain. Then for a, b ∈ D, we have the followings.

(1) If there exists an element m ∈ LCM(a, b), then ⟨m⟩ = ⟨a⟩ ∩ ⟨b⟩.
(2) Moreover, if D is a PID(principal ideal domain), then there exists

an element d ∈ GCD(a, b) such that d = ax+by for some x, y ∈ D.

Proof. (1) Since m ∈ LCM(a, b), there are x, y ∈ D such that

m = ax = by ∈ ⟨a⟩ ∩ ⟨b⟩ .

Hence ⟨m⟩ ⊂ ⟨a⟩ ∩ ⟨b⟩.
On the other hands, since for all c ∈ ⟨a⟩ ∩ ⟨b⟩, a|c and b|c, we have

m|c. Therefore c ∈ ⟨m⟩. That is ⟨m⟩ = ⟨a⟩ ∩ ⟨b⟩.
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(2) Let ⟨a, b⟩ = {ax + by | x, y ∈ D}. Then since D is PID, there
exists an element d ∈ D such that ⟨a, b⟩ = ⟨d⟩. Therefore

d ∈ ⟨d⟩ = ⟨a, b⟩ .
Hence there exist elements x, y ∈ D such that

d = ax+ by.

On the other hands, since a, b ∈ ⟨a, b⟩ = ⟨d⟩,
d|a, d|b.

Furthermore, if e|a, e|b, then since d = ax+ by, we have e|d. Therefore
d ∈ GCD(a, b).

Corollary 2.6. LetD be an integral domain and a, b ∈ D. Suppose
that GCD(a, b) is a non-emptyset. Then we have the following.

(1) If there are x, y ∈ D such that ax + by = 1, then a and b are
relatively prime.

(2) Moreover,D is a PID and a, b are relatively prime, then ax+by = 1
for some x, y ∈ D.

Proof. (1) Suppose that there are x, y ∈ D such that ax + by = 1.
Let d ∈ GCD(a, b). Then d|a and d|b, and d|ax + by = 1. Therefore
d|1, that is, d is a unit. Hence a and b are relatively prime.

(2) If a and b are relatively prime, then since 1 ∈ GCD(a, b), by
Theorem 2.5 there are elements x, y ∈ D such that ax+ by = 1.

Theorem 2.7. [3, Theorem 2] or [2, Proposition 40] Let D be a
GCD-domain. Then for a, b ∈ D, we have the followings.

(1) There exist d ∈ GCD(a, b), m ∈ LCM(a, b) such that

ab = dm ∈ GCD(a, b) · LCM(a, b).

In particular, for all d′ ∈ GCD(a, b), m′ ∈ LCM(a, b), ab and
d′m′ are associates.

(2) If 1 ∈ GCD(a, b), then ab ∈ LCM(a, b).

Proof. (1) By Theorem 2.2, there is a least common multiple m ∈
LCM(a, b) of a and b. Let d = ab/m. Then

a =
ab

m
· m

b
= d · m

b
and b =

ab

m
· m

a
= d · m

a
.

Hence d|a and d|b. Next suppose that e|a and e|b. Then

a

∣∣∣∣ abe and b

∣∣∣∣ abe .
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Hence m| abe . Therefore e| abm = d. Thus d ∈ GCD(a, b). Then ab =
dm ∈ GCD(a, b) · LCM(a, b).

Since d, d′ are associates and so are m, m′ by Theorem 2.3, obviously
ab = dm and d′m′ are associates.

(2) Since 1 ∈ GCD(a, b), by (1) we can get the following; ab ∈
GCD(a, b) · LCM(a, b) = LCM(a, b) .

Theorem 2.8. [2, Proposition 34] Let D be a GCD-domain. Then
for a, b, c ∈ D and d ∈ GCD(a, b), we have the followings.

(1) GCD(ab, ac) = aGCD(b, c).
(2) If d ̸= 0, then 1 ∈ GCD

(
a
d , b

d

)
. This means that a

d and b
d are

relatively prime.
(3) 1 ∈ GCD(a, b) ∩GCD(a, c) if and only if 1 ∈ GCD(a, bc).

Proof. (1) Let x ∈ GCD(ab, ac). Then a|ab and a|ac, so a|x. That
is, there is y ∈ D such that ay = x. Since x|ab and x|ac, we have

y|b and y|c.

Next if z|b and z|c, then az|ab and az|ac, so az|x = ay and z|y. Therefore
y ∈ GCD(b, c), and hence

ay = x ∈ GCD(ab, ac) ∩ aGCD(b, c).

Then GCD(ab, ac) = aGCD(b, c) by Theorem 2.4 (1).
(2) It follows immediately by (1).
(3) (⇒) Suppose 1 ∈ GCD(a, b)∩GCD(a, c), and let d ∈ GCD(a, bc).

Then d|a and d|bc, so d|ab and d|bc.
On the other hands, by (1)

b = b · 1 ∈ bGCD(a, c) = GCD(ab, bc).

Hence we have d|b. Since 1 ∈ GCD(a, b), we have d|1. Then d is a unit,
and by Theorem 2.3 we have 1 ∈ GCD(a, bc).

(⇐) Let d ∈ GCD(a, c). Then d|a, d|c. Therefore d|ab. Hence d|1.
That is, by Theorem 2.3 d is a unit, and 1 ∈ GCD(a, c).

Similarly, we have 1 ∈ GCD(b, c).

Theorem 2.9. Let D be a GCD-domain. Then for a, b, c ∈ D, we
have the followings.

(1) LCM(ab, ac) = aLCM(b, c).
(2) 1 ∈ LCM(a, b) ∩ LCM(a, c) if and only if 1 ∈ LCM(a, bc).

Proof. By Theorem 2.2, for all x, y ∈ D, LCM(x, y) always exists.
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(1) Let m ∈ LCM(ab, ac). Then a|ab and a|ac so a|m. That is, there
is y ∈ D such that ay = m. Since ab|m and ac|m, we have

b|y and c|y.
Next if b|z and c|z, then ab|az and ac|az, so ay = m|az and y|z. There-
fore y ∈ LCM(b, c), and hence

ay = m ∈ LCM(ab, ac) ∩ aLCM(b, c).

Then LCM(ab, ac) = aLCM(b, c) by Theorem 2.4 (2).
(2) Since a, b, c are units, it is clear.

Theorem 2.10. Suppose an integral domain D is a PID. Then for
a, b, c ∈ D, we have the following.

(1) If 1 ∈ GCD(a, b), a|bc, then a|c.
(2) If 1 ∈ GCD(a, b), a|c, b|c, then ab|c.

Proof. (1) Suppose that 1 ∈ GCD(a, b). Then by Corollary 2.6 (2),
there are x, y ∈ D such that

ax+ by = 1.

Thus acx + bcy = c. Since a|bc, there is an element a′ ∈ D such that
bc = aa′ Hence

c = acx+ bcy = acx+ (aa′)y = a(cx+ a′y).

Therefore a|c.
(2) Suppose that 1 ∈ GCD(a, b). Then by Corollary 2.6(2), there

are x, y ∈ D such that

ax+ by = 1 and acx+ bcy = c.

Since a|c and b|c, there are a′, b′ ∈ D such that c = aa′ and c = bb′

Thus
c = a(bb′)x+ b(aa′)y = ab(b′x+ a′y).

Therefore ab|c.

Definition 2.11. Let D be a GCD domain D and a, b ∈ D. We
define a relation R on D as follows: aRb if there exist elements x, y ∈ D
such that a, b ∈ GCD(x, y).

Theorem 2.12. Let D be a GCD domain. Then for the relation R
on D in the above Definition 2.11, we have the followings.

(1) For all a ∈ D, aRa
(2) If aRb, then bRa.
(3) If aRb and bRc, then aRc.
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That is, the relation R on D is an equivalent relation.

Proof. (1) For all a ∈ D, since a ∈ GCD(a, a), we have aRa.
(2) Suppose that aRb. Then there are elements x, y ∈ D such that

a, b ∈ GCD(x, y). Obviously b, a ∈ GCD(x, y). Hence bRa.
(3) Suppose that aRb and bRc. Then there are elements x, y, x′, y′ ∈

D such that a, b ∈ GCD(x, y) and b, c ∈ GCD(x′, y′).
Since b ∈ GCD(x, y) ∩ GCD(x′, y′), by Theorem 2.4 GCD(x, y) =

GCD(x′, y′). Thus

a, c ∈ GCD(x, y) = GCD(x′, y′).

Hence aRc.

Theorem 2.13. Let D be a GCD domain. Then for non-empty sub-
sets A, B of D, we have the following.

(1) GCD(A) ·GCD(B) = GCD(AB).
(2) GCD(A) ·GCD({1}) = GCD({1}) ·GCD(A) = GCD(A).
(3) 1 ∈ GCD(A) · GCD(B) if and only if 1 ∈ GCD(A) and 1 ∈

GCD(B).
(4) The set of all equivalent classes D/R = {GCD(A) | ∅ ̸= A ⊂ D}

is a commutative monoid under the above set multiple operation
(·) with an identity GCD({1}).

Proof. (1) Let a ∈ GCD(A), b ∈ GCD(B) and A = aA′, B = bB′ for
some A′, B′ ⊂ D. Then 1 ∈ GCD(A′) and 1 ∈ GCD(B′) by Theorem
2.8 (2). Therefore

GCD(A) ·GCD(B) = GCD(aA′) ·GCD(bB′)

= aGCD(A′) · bGCD(B′) by Theorem 2.8 (1)

= abGCD(A′B′) by Theorem 2.8 (3)

= GCD(abA′B′) = GCD(AB).

(2) By (1) it is clear.
(3) When 1 ∈ GCD(A) · GCD(B), assume that 1 ̸∈ GCD(A) or

1 ̸∈ GCD(B). Say 1 ̸∈ GCD(A). Then if d ∈ GCD(A), d is not a unit
by Theorem 2.3 (1). Let A = dA′. Then

1 ∈ GCD(A) ·GCD(B) = GCD(dA′) ·GCD(B)

= dGCD(A′) ·GCD(B)

Thus d is a unit. This is a contradiction. Therefore 1 ∈ GCD(A).
Similarly we have 1 ∈ GCD(B).

The converse is clear.
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(4) If it shows that the operation (·) is well-defined, then by (1), (2),
the conclusion holds.

Assume that GCD(A) = GCD(A′) and GCD(B) = GCD(B′) for
non-empty subsets A, A′, B, B′ ⊂ D. Let a ∈ GCD(A) = GCD(A′)
and b ∈ GCD(B) = GCD(B′). Then by (1)

ab ∈ GCD(AB) ∩GCD(A′B′).

Hence by Theorem 2.4(1)

GCD(AB) = GCD(A′B′).

Therefore the operation (·) is well-defined.

Theorem 2.13(3) shows that the monoid D/R is not a group.

Example 2.14. In the ring of integers Z, for GCD(6, 8) = {2, −2}
and GCD(8, 12) = {4, −4}, we have

GCD(6, 8) ·GCD(8, 12) = {2, −2}{4, −4} = {8, −8}
GCD(48, 72, 64, 96) = {8, −8}.

Hence we have

GCD(6, 8) ·GCD(8, 12) = GCD({6, 8}{8, 12}).
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